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Continuing our previous discussion of the canonical covariant formalism (Zandron,
O. S. (in press).International Journal of Theoretical Physics), the second-order canon-
ical fünfbein formalism of the topological five-dimensional Chern–Simons gravity is
constructed. Since this gravity model naturally contains a Gauss–Bonnet term quadratic
in curvature, the second-order formalism requires the implementation of the Ostrograd-
ski transformation in order to introduce canonical momenta. This is due to the presence
of second time-derivatives of the f¨unfbein field. By performing the space–time de-
composition of the manifoldM5, the set of first-class constraints that determines all the
Hamiltonian gauge symmetries can be found. The total Hamiltonian as generator of time
evolution is constructed, and the apparent gauge degrees of freedom are unambiguously
removed, leaving only the physical ones.
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1. INTRODUCTION

Recently, the five-dimensional Chern–Simons gravity theory was formulated
in the framework of the canonical covariant formalism (CCF) (Zandron, in press).
In this context the primary constraints were found, and the total Hamiltonian as
a first-class dynamical quantity strongly conserved was studied. Next the toroidal
dimensional reduction of the model was carried out by assuming that the vacuum
topology is given byM4× S1. So, the effective interactions between the gravita-
tional field and the electromagnetic one can be studied. Moreover it was shown
how the Gauss–Bonnet term appearing in the original five-dimensional model
gives rise to all the possible nonlinear corrections to electromagnetism and the
nonminimal coupling to gravity.

In spite of the fact that the CCF is not a proper Hamiltonian formalism
because it does not really propagate data defined on an initial hypersurface6, it
allows one to study many essential properties of the classical canonical formalism
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for constrained systems. This is carried out in a more simple way than provided
by the usual canonical f¨unfbein formalism (CFF). However, when the model is
considered from the quantum point of view, the CFF and therefore the use of the
Poisson brackets is needed.

In Zandron (in press) it was also shown that the relation between the CCF and
the usual CFF is not trivial. The integral relationship relating the form brackets
introduced in the CCF with the standard Poisson brackets of the CFF was analyzed.
This was done in the first-order CCF, i.e., when both field variables, the f¨unfbein
Ṽ A and the spin connection ˜ωAB are considered as independent variables, so only
first-time derivatives appear in the formalism.

The Riemannian casẽRA = dṼ A − ω̃A
.B ∧ Ṽ B = 0 was assumed in that pa-

per. When the torsion equation of motion is taken as an strongly equal to zero
constraint, it allows to solve for the spin connection ˜ωA

.B = ω̃A
.B(Ṽ) in terms of the

fünfbein obtaining the second-order formalism. Therefore the Hamiltonian for-
malism is completed when the second-order CFF is implemented. In this context
the set of first-class constraints which determines all the Hamiltonian gauge sym-
metries must be constructed. So, the apparent gauge degrees of freedom can be
unambiguously removed leaving only the physical ones. Again, the knowledge of
the first-class constraints that verify the constraint algebra is essential from the
quantum point of view.

As known, because of the presence of the Gauss–Bonnet term the five-
dimensional Chern–Simons gravity model is a higher-derivative theory. It contains
second time-derivatives on the f¨unfbein that cannot be eliminated by partial inte-
gration. So, it is not possible go over to the second-order formalism directly from
the CCF. Precisely, the higher-derivative character of the theory is made evident
in the second-order formalism.

Consequently, in the framework of the Dirac formalism we are in presence
of a constrained Hamiltonian system with a singular higher-order Lagrangian.
Therefore, in order to introduce canonical momenta in this higher derivative model,
the Ostrogradski transformation must be considered (Kentwell, 1988; Kersten,
1988; Nesterenko, 1989; Nesterenko and Nguyen, 1988; Zi-ping, 1990, 1991a,b).

On the other hand, the primary constraints we have found in the framework
of the CCF (see Eqs. (3.5) and (3.7) of Zandron (in press)), will be no longer
a relationship between field and momentum. These relations depending on the
velocities cease to be constraints, and so new constraints must be expected.

The aim of the present paper is to construct the second-order Hamiltonian
formalism for the topological five-dimensional Chern–Simons gravity theory. This
is done by performing the space–time decomposition inM5, extending the results
given in Nelson and Regge (1986).

This paper is organized as follows: In section 2, the space–time decomposition
in the five-dimensional manifoldsM5 is carried out. In section 3, the torsion two-
form Ra = 0 equation is used as a strongly equal to zero constraint and the metricity
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condition is introduced to determine the spin connection. In section 4, the model is
arranged in order to derive the second-order hamiltonian formalism (Dirac, 1962;
Foussatset al., 1992; Nelson and Teitelboim, 1977; 1978). After introducing the
Ostrogradski transformation, the new first-class constraints are studied. Finally,
the total Hamiltonian generator of time evolutions is written.

2. THE SPACE–TIME DECOMPOSITION IN THE
FIVE-DIMENSIONAL MANIFOLDS M5

With the purpose to construct the second-order Hamiltonian formalism for
the model, the first step is to carry out the space–time decomposition inM5. The
procedure is similar to that given in Nelson and Regge (1986) forM4, where all
the definition must be extended to five dimensions. Next, all the equations and
quantities given in form language must be written in components. The dynamical
fields must be considered only as rcduccd forms, i.e., forms defined on the physical
space given by the coset manifoldM5 = G/H , whereG is the group manifold and
the bosonic groupH ⊂ G is the exact gauge symmetry group (Zandron, in press).
Moreover, we assume that the reduced forms defined onM5 are written in the
holonomic basisdxµ. Therefore, equations, fields, and forms must be projected
on a space-likex0 = t = t0 hypersurface6 of four dimensions. This is done by
considering the injection mapχ : 6→ M5 in such a way that the associated
pull-backχ∗ acts on any generic form by settingt = t0 anddt = 0.

From now on we use Greek indicesµ, ν, ρ , . . . = 0, 1, 2, 3, 4, for space–
time tensors (world indices); Latin indicesa, b, c, . . . for tangent space (Lorentz
indices); and Latin indicesi , j , k, . . . for label spatial components only.

Moreover, in the (CFF) the space–time split of the f¨unfbeinV (5)a = V (5)a
µ dxµ,

and the five-dimensional metric tensorg(5)
µν must be considered. The f¨unfbein is

split according to

V (5)
ai = V (4)

ai = Vai , (2.1a)

V (4)i
a = Vi

a , (2.1b)

V (5)i
a = V (4)i

a + (N⊥)−1Ni na, (2.1c)

Vi
a Vbi = ηab+ nanb, (2.1d)

where the normalna = nµVaµ to the hypersurface6 satisfies

na = −N⊥V (5)0
a , (2.2a)

naVa
i = 0, (2.2b)

nana = −1, (2.2c)

andnµ = (−N⊥, 0, 0, 0, 0). In the above equationNi and N⊥ are respectively
the usual shift and lapse functions which determine the components of the
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five-dimensional metric tensorg(5)
µν . The five-dimensional metric tensorg(5)

µν split
according toN⊥ = (−g00)1/2, Ni = g0i , g = det(g(4)), (−g(5))1/2 = N⊥g1/2.

An arbitrary vectorV (5)a can be decomposed as follows

V (5)a = V⊥na + V i Va
i , (2.3a)

where

V⊥ = −V⊥ = −naVa, Vi = V (5)aVai . (2.3b)

The alternating tensorsεi1... i4 on the hypersurface6 andε0,i1... i4 on the man-
ifold M5 are related by the equation:N⊥εi1... i4 = −ε0,i1... i4. Moreover,εµ1... µ5 =
V (5)

a1µ1
. . .V (5)

a5µ5
εa1...a5.

The spatial components of the two one-form gauge fields in thedxi , basis on
6 are called respectively:−ω(5)ab

i (x) andVa
i (x).

The corresponding set of canonical momentaπab andπa can be also written
in the basis. We define the relationship between such momenta and their spatial
components through the general equation

π6 = 1

(D − 1− n)!
π

i1... in
6 (x)εi1... in j1... jmdxj1... jmg−1/2 (2.4)

wheren+m= D − 1= 4 and beingn the form degree of the fieldµ6 canonical
conjugate to the momentumπ6 .

For the constraints8ab and8a associated to the canonical momenta, similar
expressions to that given in (2.4) are hold.

Now the following Poisson brackets between the components of the field and
canonical conjugate momenta can be written[

ωab
i (x), π i

cd(y)
] = −[π j

cd(y), ωab
i (x)

] = δab
[cd] δ

j
i δ

4(x, y), (2.5a)[
Va
.i (x), π j

b (y)
] = −[π j

b (y), Va
.i (x)

] = δa
b δ

j
i δ

4(x, y), (2.5b)

Heretofore, in Zandron (in press) the spin connection and the f¨unfbein were
taken as independent dymamical field working within the first-order CFF. It does
not allow the identification of the true dynamical fields by removing the gauge
degrees of freedom from the physical ones. Therefore the second-order formalism
must be developed.

3. TORSION EQUATION AND METRICITY CONDITION

In these models the torsion equation plays an important role because it allows
the construction of the second-order canonical formalism starting from the first-
order one by solving certain field equations considered as constraints on curvatures
(Macı́as and Lozano, 2001). In the Riemannian case the torsion two-formRa = 0
equation must be considered as an strongly equal to zero constraint.
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So, the higher-derivative character of the theory is made evident in the frame-
work of the second-order formalism. From the torsion equation it is easy to obtain
the solution for the spin connection one-formω(5)ab, whose components in the
holonomic basis have the well-known expression for pure gravity in five dimen-
sions, i.e.,

ω(5)ab
µ (V) = 1

2
V (5)aν

(
∂µV (5)b

ν − ∂νV (5)b
µ

)− 1

2
V (5)bν

(
∂µV (5)a

ν − ∂νV (5)a
µ

)
−1

2
V (5)aρV (5)bσ

(
∂ρV (5)

cσ − ∂ρV (5)
cρ

)
V (5)c
µ . (3.1a)

that also can be written

ω(5)ab
µ (V) = 1

2

(
2(5)
µνρ −2(5)

νρµ +2(5)
ρµν

)
V (5)aνV (5)bρ (3.1b)

where

2(5)
µνρ =

(
∂µV (5)a

ν − ∂νV (5)a
µ

)
V (5)

aρ (3.2)

On the other hand, in the second-order CFF by considering the f¨unfbein
postulate on both the manifoldM5 and the four-dimensional hypersurface6, the
spin connectionsω(5)ab

µ andω(4)ab
i can be determined completely.

The metricity condition or f¨unfbein postulate implicates that “the f¨unfbein is
covariantly constant.” That is the full covariant derivative including both the spin
and the world (metric) connection satisfies the standard metricity condition

∂µV (5)a
.ν + ω(5)ab

µ V (5)
bν − 0(5)ρ

.µν V (5)a
.ρ = 0. (3.3)

where0(5)ρ
.µν is the affine connection on the five-dimensional manifoldM5.

By considering the spin connectionω(4)ab and the affine connection0(4)i
.i j on

the hypersurface6, we also have

∂kVa
. j + ω(4)ab

k Vbj − 0(4)i
.k j Va

.i = 0, (3.4)

by virtue of the metricity condition on the four-dimensional hypersurface6. Also,
multiplying the Eq. (3.4) byna holds

∂k na + ω(4)ab
k nb = 0. (3.5)

Therefore the Eqs. (3.3) and (3.4) determine completely both spin connections
ω(5)ab andω(4)ab.

After some algebraic manipulations the well-known relationship between the
spatial components of both spin connections can be found

ω
(5)ab
i = ω(4)ab

i + (nbVaj − naVbj )Ki j , (3.6)

where Ki j is the extrinsic curvature on the four-dimensional surface6 in the
manifoldM5. The extrinsic curvature tensorKi j is defined by the following general
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equation

Ki j = 1

N⊥
(−ġi j + Ni ‖ j + Nj ‖i ), (3.7)

where the double stroke‖ denotes the covariaut derivative on the four-surface6

only including the affine connection.
Moreover, for the componentω.ab

⊥ the following equation holds

N⊥ωab
⊥ =

1

2

(
VakδN Vb

k − naδNnb − [a→ b]
)− (Vaknb − Vbkna)∂k N⊥ (3.8)

where

δN Vak = ∂0 Vak − LNk Vak, (3.9a)

δN na = ∂0 na − LNk na, (3.9b)

andLNk stands for the Lie derivative operator alongNk in the four-dimensional
hypersurface6.

As it can be seen by means of lengthy but direct calculations, both the con-
straints and the canonical HamiltonianHcancan be written in terms of the canonical
momenta and the quantitiesVai , N⊥, Ni , ω

(4)ab
i , ω.ab

⊥ , andKi j .

4. SECOND-ORDER HAMILTONIAN FORMALISM
AND NEW CONSTRAINTS

As commented above, the higher-derivative character of this model does not
allow go over to the second-order formalism directly from the CCF. This is due
to the presence of second time-derivatives when the spin-connection is written in
terms of the f¨unfbein according to (3.1).

Consequently, we must turn to the initial five-form Lagrangian density
(Macı́as and Lozano, 2001)

L = εabcde

(
Rbc∧ Rde∧ Va + 2

3
λ Rde∧ Va ∧ Vb ∧ Vc

+ 1

5
λ2Va ∧ Vb ∧ Vc ∧ Vd ∧ Ve

)
, (4.1)

whereVa and Rbc are respectively the f¨unfbein one-form and the Riemannian
curvature two-form in the manifoldM5.

Now, the Lagrangian density (4.1) must be written in components. Once
the torsion equation is taken into account, and without considering total exterior
derivatives, the Lagrangian reads

L = −N⊥g1/2εabcdeε
αµνρτ

[
∂αω

(5)de
µ

(
ω(5)bc
ν ω(5)a f

ρ V (5)
τ f + 2ω(5)bf

ν ω(5) f c
ρ V (5)

τa

)
−ω(5)bf

α ω(5) f c
µ ω(5)dg

ν ω(5)ge
ρ V (5)a

τ − 2λω(5)de
α ω(5)a f

µ V (5) f
ν V (5)b

ρ V (5)c
τ

]
, (4.2)

being the last term of (4.1) a constant one.
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The first two terms in (4.2) originate the second time-derivative terms on the
fünfbein, when the Eq. (3.1) is used.

In the Chern–Simons expression it is not possible to eliminate the higher-
derivative terms by partial integration. Consequently, in the framework of the
Dirac formalism we are in the presence of a constrained Hamiltonian system with
a singular higher-order Lagrangian.

Therefore, at this stage it is necessary to consider the Ostrogradski trans-
formation (Nesterenko, 1989; Zi-ping, 1990, 1991a,b). Following the steps given
in Nesterenko (1989) and Zi-ping (1990, 1991a,b), canonical momenta in this
higher-derivative theory must be introduced.

The space–time decomposition we use is that given in (2.1). We start by
defining the following independent dynamical field variables

V (5)
aµ =

(
V (5)

ai ; V (5)
a0 = naN⊥ + Ni Vai

)
(4.3a)

Baµ = ∂0V (5)
aµ (4.3b)

The Ostrogradski transformation introduces respectively the following cano-
nical momenta

5(1)µ
a = ∂L

∂Ba
µ

− ∂ν
[

∂L
∂
(
∂νBa

µ

)] (4.4a)

5(2)µ
a = ∂L

∂
(
∂0Ba

µ

) (4.4b)

where the Poisson brackets for canonical conjugate variables are given by[
V (5)a
ν (x),5(1)µ

b (y)
] = −[5(1)µ

b (y), V (5)a
ν (x)

] = δa
b δ

µ
ν δ(x − y), (4.5a)[

Ba
ν (x),5(2)µ

b (y)
] = −[5(2)µ

b (y), Ba
ν (x)

] = δa
b δ

µ
ν δ(x − y). (4.5b)

At this stage by using the space–time decomposition, also the Eq. (4.2) is
written in terms of the quantitiesVai , N⊥, Ni , ω

(4)ab
i , ω.ab

⊥ , and Ki j . From the
Eq. (4.4) and by means of straightforward but heavy algebraic manipulation the
different momenta can be computed and the following results are found:

1. The relationships between fields and canonical conjugate momenta inde-
pendent on the velocities give rise to the following primary constraints

φ(2)0
c = 5(2)0

c ≈ 0, (4.6a)

φ(2)i
c = 5(2)i

c − f i
c

(
ω.ab

k , Va
k

) ≈ 0, (4.6b)

where f i
c (ω.ab

k , Va
k ) is a functional only of the spatial components and the

perpendicular component of the spin connection, and the spatial compo-
nents of the f¨unfbein,

φ(1)0
c = 5(1)0

c − g0
c

(
ω.ab

k Va
k

) ≈ 0. (4.6c)
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Analogously, the functionalg is a cumbersome expression depending
on the spatial components and the perpendicular component of the spin
connection, its spatial derivatives, and the components of the f¨unfbein.
[We do not write here the explicit expressions of the functionalf andg
because this is not necessary for our purpose.]

2. The spatial components of the momentum (4.4a), i.e.,5(1)i
c is a cumber-

some expression depending on the velocities.

By means of these momenta, the canonical HamiltonianHcanremains defined
by

Hcan= Ba
µ5

(1)µ
a + Ḃa

µ5
(2)µ
a − L (4.7)

where it was replaced by∂0 Va
µ p or Ba

µ. We note that the canonical Hamiltonian is
formed by eliminating only the velocities∂0 Ba

µ. The fieldBa
µ cannot be eliminated

from the formalism when we treat with higher-derivative Lagrangians (Nesterenko,
1989). Once the explicit expression of theL is used in (4.7) the velocitieṡBa

µ are
eliminated.

Finally, the total Hamiltonian generator of time evolution of generic func-
tionals is given by

HT =
∫

d4HT , (4.8)

where

HT = Hcan+ λ(2)c
.µ φ(2)µ

c + λ(1)c
.0 φ(1)0

c . (4.9)

The arbitrary Lagrange multipliers are evaluated by means of the Hamilton
equationsȦ = [ A, HT ]P B.

At this stage, from the stationary primary constraints, it is possible to de-
fine successively the secondary constraints according to the well-known Dirac
algorithm

Ä(k)
c =

[
Ä(k−1)

c , HT
]

PB
. (4.10)

This algorithm must be continued untilÄ(k)
c satisfies

Ä(k+1)
c = [Ä(k)

c , HT
]

PB
= Ca

.cn Ä
(n)
a . (4.11)

It can be shown that in the model under consideration there is a set of secondary
constraints. By explicit computation it can be shown that

Ä(1)
c = φ̇(2)0

c = [φ(2)0
c , HT

]
PB
≈ 0, (4.12)

is a weakly zero quantity.
From now on, following the Dirac’s prescriptions, the procedure can be

continued for each one of the constraints. The Poisson brackets different from



P1: GCR

International Journal of Theoretical Physics [ijtp] pp1044-ijtp-475681 November 12, 2003 1:33 Style file version May 30th, 2002

Second-Order Five-Dimensional Chern–Simons Gravity 2921

zero which must be evaluated are essentially [5(2)i
c (x), ωab

µ (y)]PB and [5(1)ρ
c (x),

ωab
µ (y)]PB. Although the explicit computation is straightforward it involves heavy

algebraic manipulations.
Moreover, when the computation of the Poisson brackets is carried out it can

be seen that none of the secondary constraints is first-class.
Some conclusions can be obtained. Looking at the primary constraints (4.6)

and taking into account the secondary constraints constructed by means of appli-
cation of the Dirac algorithm (4.10), can be seen that the unique primary constraint
having vanishing Poisson brackets with all the other ones isφ(2)0

c . So, the primary
constraintφ(2)0

c is first-class and corresponds to a gauge invariance of the model
under a local gauge transformation. The other possible first-class constraints are
constructed by considering appropriate linear combination of constraints. As well
known these constraints are related with the generatorsMab of the local Lorentz
group (Nelson and Regge, 1986).

Finally, it can be said that the five-dimensional Chern–Simons gravity theory
in the second-order formalism has primary and secondary constraints. This set has
constraints of first- and second-class ones. The presence of second-class constraints
makes necessary to follow the prescriptions of the Dirac formalism. In this sense,
the Dirac brackets must be first defined from the Poisson brackets, and next the
second-class constraints must be eliminated from the formalism by taking them
strongly equal to zero.

5. CONCLUSIONS

Recently (Zandron, in press), the topological five-dimensional Chern–Simons
gravity was formulated in the framework of the first-order extended canonical
covariant formalism (CCF). The relation between the CCF and the usual first-
order canonical formalism written in components was also given. This was done
by means of a nontrivial integral relationship between the form brackets and the
usual Poisson brackets.

As it was shown, the CCF is not a proper canonical formalism because it does
not propagate data defined on an initial hypersurface as it is required by a standard
mechanical system.

In spite of this, at classical level the CCF is a powerful method to understand
the structure of the gravitational field, particularly in more than four dimensions
and for higher curvature gravity models (Zandron, in press). It is covariant in all
their steps because of the use of exterior algebra. This allows to find the equations
of motion and the constraints in a very simple way, without introducing complicate
calculations.

Moreover, from the CCF only is possible go over to the proper canonical
formalism in the first-order formulation, i.e., when the spin connection and the
fünfbein are taken as independent field variables.
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Contrarily to what happens in the CCF, in the second-order CFF after long
and heavy algebraic manipulations, cumbersome noncovariant expressions for the
physical quantities are obtained.

The torsion equation allows to obtain the second-order canonical formalism
starting from the first-order one. In the Riemannian case the torsion two-form
Ra = 0 equation must be considered as a strongly equal to zero constraint, and so
the spin connection is solved in terms of the f¨unfbein.

Because of the higher-derivative character of the model made evident in the
second-order formalism, the presence of second time-derivatives on the f¨unfbein
field makes necessary the implementation of the Ostrogradski transformation in
order to introduce canonical momenta. Essentially this implicate to take the first
time-derivate of the f¨unfbein as an independent dynamical field.

Finally, by performing the space–time decomposition inM5, and by using
the Eqs. (3.1) and (3.6), the Lagrangisn density (4.2) is written in terms of the
quantitiesVai , N⊥, ω(4)ab

i , ω.ab
⊥ , and Ki j Later on, this constrained Hamiltonian

system must be treated as usual according to the Dirac prescriptions.
The canonical Hamiltonian is evaluated from the Eq. (4.7). Later on, the

total Hamiltonian (4.8) as generator of time evolution can be given in terms of
the first-class constraints which closes the constraints algebra. Therefore, all the
Hamiltonian gauge symmetries remain determined and the apparent gauge degrees
of freedom csn be unambiguously removed leaving only the physical ones. This
last step is indispensable when the model is considered from the quantum point of
view.
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