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Second-Order Five-Dimensional
Chern—Simons Gravity
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Continuing our previous discussion of the canonical covariant formalism (Zandron,
0. S. (in press)international Journal of Theoretical Physjcshe second-order canon-

ical funfbein formalism of the topological five-dimensional Chern—Simons gravity is
constructed. Since this gravity model naturally contains a Gauss—Bonnet term quadratic
in curvature, the second-order formalism requires the implementation of the Ostrograd-
ski transformation in order to introduce canonical momenta. This is due to the presence
of second time-derivatives of theirffbein field. By performing the space-time de-
composition of the manifold1®, the set of first-class constraints that determines all the
Hamiltonian gauge symmetries can be found. The total Hamiltonian as generator of time
evolution is constructed, and the apparent gauge degrees of freedom are unambiguously
removed, leaving only the physical ones.
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1. INTRODUCTION

Recently, the five-dimensional Chern—Simons gravity theory was formulated
in the framework of the canonical covariant formalism (CCF) (Zandron, in press).
In this context the primary constraints were found, and the total Hamiltonian as
a first-class dynamical quantity strongly conserved was studied. Next the toroidal
dimensional reduction of the model was carried out by assuming that the vacuum
topology is given byM* x S'. So, the effective interactions between the gravita-
tional field and the electromagnetic one can be studied. Moreover it was shown
how the Gauss—Bonnet term appearing in the original five-dimensional model
gives rise to all the possible nonlinear corrections to electromagnetism and the
nonminimal coupling to gravity.

In spite of the fact that the CCF is not a proper Hamiltonian formalism
because it does not really propagate data defined on an initial hypersbirféce
allows one to study many essential properties of the classical canonical formalism
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for constrained systems. This is carried out in a more simple way than provided
by the usual canonicalfitbein formalism (CFF). However, when the model is
considered from the quantum point of view, the CFF and therefore the use of the
Poisson brackets is needed.

In Zandron (in press) it was also shown that the relation between the CCF and
the usual CFF is not trivial. The integral relationship relating the form brackets
introduced in the CCF with the standard Poisson brackets of the CFF was analyzed.
This was done in the first-order CCF, i.e., when both field variables uithflpéin
VA and the spin connectian®® are considered as independent variables, so only
first-time derivatives appear in the formalism.

The Riemannian case” = dV* — &% A VB = 0 was assumed in that pa-
per. When the torsion equation of motion is taken as an strongly equal to zero
constraint, it allows to solve for the spin connectiofy = 5).3(\7) in terms of the
funfbein obtaining the second-order formalism. Therefore the Hamiltonian for-
malism is completed when the second-order CFF is implemented. In this context
the set of first-class constraints which determines all the Hamiltonian gauge sym-
metries must be constructed. So, the apparent gauge degrees of freedom can be
unambiguously removed leaving only the physical ones. Again, the knowledge of
the first-class constraints that verify the constraint algebra is essential from the
quantum point of view.

As known, because of the presence of the Gauss—Bonnet term the five-
dimensional Chern—Simons gravity model is a higher-derivative theory. It contains
second time-derivatives on therffbein that cannot be eliminated by partial inte-
gration. So, it is not possible go over to the second-order formalism directly from
the CCF. Precisely, the higher-derivative character of the theory is made evident
in the second-order formalism.

Consequently, in the framework of the Dirac formalism we are in presence
of a constrained Hamiltonian system with a singular higher-order Lagrangian.
Therefore, in order to introduce canonical momentain this higher derivative model,
the Ostrogradski transformation must be considered (Kentwell, 1988; Kersten,
1988; Nesterenko, 1989; Nesterenko and Nguyen, 1988; Zi-ping, 1990, 1991a,b).

On the other hand, the primary constraints we have found in the framework
of the CCF (see Egs. (3.5) and (3.7) of Zandron (in press)), will be no longer
a relationship between field and momentum. These relations depending on the
velocities cease to be constraints, and so hew constraints must be expected.

The aim of the present paper is to construct the second-order Hamiltonian
formalism for the topological five-dimensional Chern—Simons gravity theory. This
is done by performing the space—time decompositiav fp extending the results
given in Nelson and Regge (1986).

This paper is organized as follows: In section 2, the space—time decomposition
in the five-dimensional manifolds!® is carried out. In section 3, the torsion two-
form R® = 0 equationis used as a strongly equal to zero constraint and the metricity
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condition is introduced to determine the spin connection. In section 4, the model is
arranged in order to derive the second-order hamiltonian formalism (Dirac, 1962;
Foussat®t al, 1992; Nelson and Teitelboim, 1977; 1978). After introducing the
Ostrogradski transformation, the new first-class constraints are studied. Finally,
the total Hamiltonian generator of time evolutions is written.

2. THE SPACE-TIME DECOMPOSITION IN THE
FIVE-DIMENSIONAL MANIFOLDS M5®

With the purpose to construct the second-order Hamiltonian formalism for
the model, the first step is to carry out the space-time decompositids.iThe
procedure is similar to that given in Nelson and Regge (1986Mbrwhere all
the definition must be extended to five dimensions. Next, all the equations and
guantities given in form language must be written in components. The dynamical
fields must be considered only as rcduccd forms, i.e., forms defined on the physical
space given by the coset manifowP = G/H, whereG is the group manifold and
the bosonic groupl C G is the exact gauge symmetry group (Zandron, in press).
Moreover, we assume that the reduced forms defineMeérare written in the
holonomic basiglx*. Therefore, equations, fields, and forms must be projected
on a space-like® = t = t° hypersurfaces of four dimensions. This is done by
considering the injection map : ¥ — M?® in such a way that the associated
pull-back x * acts on any generic form by settihg= t° anddt = 0.

From now on we use Greek indicesv, p,...=0,1, 2, 3, 4, for space—
time tensors (world indices); Latin indicesb, c, ... for tangent space (Lorentz
indices); and Latin indicels j, k, ... for label spatial components only.

Moreover, inthe (CFF) the space-time split of thefbieinv 52 = v &k dx",
and the five-dimensional metric tensgfv) must be considered. Therifbein is
split according to

Ve =V = Va, (2.1a)
ARERYS (2.1b)
Va(S)i _ Vé4)i + (NY)" N, (2.1¢)
Vi Vi = nab + Nalp, (2.1d)
where the normah, = n*V,, to the hypersurfac& satisfies
Na = =N+, (2.22)
naVi® =0, (2.2b)
nan® = —1, (2.2c)

andn, = (~N+, 0,0, 0, 0) In the above equatiohl' and N+ are respectively
the usual shift and lapse functions which determine the components of the
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five-dimensional metric tensg). The five-dimensional metric tensgf®) split
according toN* = (—=g%)"/?, Ni = goi, g = det@"), (—g®)"? = N*+g"2.
An arbitrary vecton/®? can be decomposed as follows

YOR — plna L yiya (2.3a)
where
Vi=—y, =—n)? V=V, (2.3b)

The alternating tensoes, _j, on the hypersurfack andsyj, i, on the man-
ifold M® are related by the equatioNtte, i, = —&0i, .0, Moreovers,, . ., =
\VAS) V(5) £8 8,

aju *
The spat|al components of the two one-form gauge fields id ghebasis on
¥ are called respectlvely—a)(s)ab(x) andV(x).
The corresponding set of canonical momentgand, can be also written
in the basis. We define the relationship between such momenta and their spatial
components through the general equation

1
(D-1- )|
wheren +m = D — 1 = 4 and being the form degree of the field* canonical
conjugate to the momentuny;.

For the constraint®,, and®, associated to the canonical momenta, similar
expressions to that given in (2.4) are hold.

Now the following Poisson brackets between the components of the field and
canonical conjugate momenta can be written

[07°00, ma(¥)] = —[7da(), ©2°00)] = 85y 8 5%(x, ¥), (2.5a)

[VE(X), 7 ()] = —[7 (%), VEX)] = 528 6%(x, y), (2.5b)

Heretofore, in Zandron (in press) the spin connection anduhtb&in were
taken as independent dymamical field working within the first-order CFF. It does
not allow the identification of the true dynamical fields by removing the gauge
degrees of freedom from the physical ones. Therefore the second-order formalism
must be developed.

Ty = " (X)ei, . o, jpdXIEIng =Y (2.4)

3. TORSION EQUATION AND METRICITY CONDITION

In these models the torsion equation plays an important role because it allows
the construction of the second-order canonical formalism starting from the first-
order one by solving certain field equations considered as constraints on curvatures
(Macias and Lozano, 2001). In the Riemannian case the torsion twof8rm 0
equation must be considered as an strongly equal to zero constraint.
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So, the higher-derivative character of the theory is made evident in the frame-
work of the second-order formalism. From the torsion equation it is easy to obtain
the solution for the spin connection one-forf?2°, whose components in the
holonomic basis have the well-known expression for pure gravity in five dimen-
sions, i.e.,

1
(5)ab(V) V(5)av(8ﬂvv(5)b _ avvlgs)b) _ EV(S)bv(aMV v(5)a _ BVV/ES)E")

—%v@aﬂv@bﬁ (9, V) — 9,V v o, (3.1a)
that also can be written
oPR(V) = (@ff’gp —0F) +6F) vEary 6 (3.1b)
where
08 = (3,VP? —3,vER)VE) (3.2)

On the other hand, in the second-order CFF by considering uhtbdin
postulate on both the manifold® and the four-dimensional hypersurfaEethe
spin connections >} ando!™® can be determined completely.

The metr|C|ty condltlon ordinfbein postulate implicates that “therffbein is
covariantly constant.” That is the full covariant derivative including both the spin
and the world (metric) connection satisfies the standard metricity condition

BVOR +of N — VIR =0 @3

whereFFlf)vp is the affine connection on the five-dimensional manifelel

By considering the spin connectief™?® and the affine connectiol‘rj(i‘})i on
the hypersurfac&, we also have

WV + oV — TV =0, (3.4)
by virtue of the metricity condition on the four-dimensional hypersurfacalso,
multiplying the Eq. (3.4) by, holds
3 n? + o{™Pn, = 0. (3.5)
Therefore the Egs. (3.3) and (3.4) determine completely both spin connections
w(S)ab andw(A)ab_
After some algebraic manipulations the well-known relationship between the
spatial components of both spin connections can be found
o = o 1 (VA — navPiK;;, (3.6)

where Kj; is the extrinsic curvature on the four-dimensional surfacén the
manifoldM?®. The extrinsic curvature tensks; is defined by the following general
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equation
1.
Kij = (=i + Nijy + Nji), 3.7)

where the double strokedenotes the covariaut derivative on the four-surface
only including the affine connection.
Moreover, for the componemfb the following equation holds

1

Nt = E(vf’“&stkb —n?syn® —[a — b]) — (V&*n® — VP*n?)g N+ (3.8)
where

Sn VA = 9o VK — L VK (3.9a)

Sy N? = 99 N? — Lk N3, (3.9b)

and Ly« stands for the Lie derivative operator aloN in the four-dimensional
hypersurfacez.

As it can be seen by means of lengthy but direct calculations, both the con-
straints and the canonical Hamiltoni&faancan be written in terms of the canonical
momenta and the quantiti&s;, N+, N;, wi(4)ab, w?®, andKj; .

4. SECOND-ORDER HAMILTONIAN FORMALISM
AND NEW CONSTRAINTS

As commented above, the higher-derivative character of this model does not
allow go over to the second-order formalism directly from the CCF. This is due
to the presence of second time-derivatives when the spin-connection is written in
terms of the finfbein according to (3.1).

Consequently, we must turn to the initial five-form Lagrangian density
(Macias and Lozano, 2001)

2
L= 8abcde(Rbc/\ RYe A VA 4 3 A RIEAVEAVE A VE

1
+ g)»zva/\VbAVC/\Vd/\Ve>, (4.1)

where V2 and R°¢ are respectively theufifoein one-form and the Riemannian
curvature two-form in the manifolt®.

Now, the Lagrangian density (4.1) must be written in components. Once
the torsion equation is taken into account, and without considering total exterior
derivatives, the Lagrangian reads

L =— NLgl/ZEabcdeSauvpt [aawl(t5)de(wl()5)bcwl(05)afVt(?) + 2w§5)bfw£5)fcvr(g))

— P Oy (5H wE)S)gth(S)a ~ 250 CUSS)afVU(S)f V'O(S)bVT(S)c]’ (4.2)

being the last term of (4.1) a constant one.



Second-Order Five-Dimensional Chern—Simons Gravity 2919

The first two terms in (4.2) originate the second time-derivative terms on the
funfbein, when the Eq. (3.1) is used.

In the Chern—Simons expression it is not possible to eliminate the higher-
derivative terms by partial integration. Consequently, in the framework of the
Dirac formalism we are in the presence of a constrained Hamiltonian system with
a singular higher-order Lagrangian.

Therefore, at this stage it is necessary to consider the Ostrogradski trans-
formation (Nesterenko, 1989; Zi-ping, 1990, 1991a,b). Following the steps given
in Nesterenko (1989) and Zi-ping (1990, 1991a,b), canonical momenta in this
higher-derivative theory must be introduced.

The space—time decomposition we use is that given in (2.1). We start by
defining the following independent dynamical field variables

VO = (VO VG = naNt + N'Vy) (4.3a)

al

Ba, = 9V, (4.3b)

au

The Ostrogradski transformation introduces respectively the following cano-
nical momenta

oL oL
Hg-)ll = TRa 81, |:7ai| (44a)
08} 9(3,B})
5
I (4.4b)
9(30B2)

where the Poisson brackets for canonical conjugate variables are given by
[VER(), I ()] = — [ (y), VER()] = 83 81 8(x — y),  (4.5a)
[B200, " (y)] = —[TI5(y), BE()] = 8581 8(x —y).  (4.5b)

At this stage by using the space—tlme decomposmon also the Eq. (4.2) is
written in terms of the quantitie¥,, N+, Ni, o -(4)ab a)L , and Kj;. From the
Eqg. (4.4) and by means of straightforward but heavy algebraic manipulation the
different momenta can be computed and the following results are found:

1. The relationships between fields and canonical conjugate momenta inde-
pendent on the velocities give rise to the following primary constraints

¢(2)0 H(Z)O ~ 0, (4.6a)
¢é2)| — ng)l _ fc (a)kab, Vka) ~ 0, (4.6b)

where fl (02°, V&) is a functional only of the spatial components and the
perpendicular component of the spin connection, and the spatial compo-
nents of thedinfbein,

M0 =M% — g2(02® V2) ~ 0. (4.6¢)
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Analogously, the functional is a cumbersome expression depending
on the spatial components and the perpendicular component of the spin
connection, its spatial derivatives, and the components ofuhtbé&in.

[We do not write here the explicit expressions of the functiohandg
because this is not necessary for our purpose.]

2. The spatial components of the momentum (4.4a),lil§) is a cumber-
some expression depending on the velocities.

By means of these momenta, the canonical Hamiltokigf remains defined

by
Hean= BEI{H + BAIOW — £ (4.7)

where it was replaced b V2 p or BY. We note that the canonical Hamiltonian is
formed by eliminating only the velocitieis B7. The fieldBY cannot be eliminated
fromthe formalism when we treat with higher-derivative Lagrangians (Nesterenko,
1989). Once the explicit expression of thias used in (4.7) the velocitieB? are
eliminated.

Finally, the total Hamiltonian generator of time evolution of generic func-
tionals is given by

Hr = f d*Hr, (4.8)
where
Hr = Hean+ 22 p@1t 4 1 {0, (4.9)

The arbitrary Lagrange multipliers are evaluated by means of the Hamilton
equationsA = [A, Hr]ps.

At this stage, from the stationary primary constraints, it is possible to de-
fine successively the secondary constraints according to the well-known Dirac
algorithm

Q¥ = [Q¥D, Hr ], (4.10)
This algorithm must be continued un®¥® satisfies
Q¥ =¥, Hr],, = C&, Q. (4.11)
Itcan be shownthatinthe modelunder considerationthere is a setof secondary
constraints. By explicit computation it can be shown that
Q) = G20 = [$2°, H oo ~ 0, (4.12)

is a weakly zero quantity.
From now on, following the Dirac’s prescriptions, the procedure can be
continued for each one of the constraints. The Poisson brackets different from
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zero which must be evaluated are essentidll{f) (x), »2°(y)]ps and n&r (x),
wfjb(y)]pB. Although the explicit computation is straightforward it involves heavy
algebraic manipulations.

Moreover, when the computation of the Poisson brackets is carried out it can
be seen that none of the secondary constraints is first-class.

Some conclusions can be obtained. Looking at the primary constraints (4.6)
and taking into account the secondary constraints constructed by means of appli-
cation of the Dirac algorithm (4.10), can be seen that the unique primary constraint
having vanishing Poisson brackets with all the other ong&& So, the primary
constrainp{?? is first-class and corresponds to a gauge invariance of the model
under a local gauge transformation. The other possible first-class constraints are
constructed by considering appropriate linear combination of constraints. As well
known these constraints are related with the generddiggsof the local Lorentz
group (Nelson and Regge, 1986).

Finally, it can be said that the five-dimensional Chern—Simons gravity theory
in the second-order formalism has primary and secondary constraints. This set has
constraints of first- and second-class ones. The presence of second-class constraints
makes necessary to follow the prescriptions of the Dirac formalism. In this sense,
the Dirac brackets must be first defined from the Poisson brackets, and next the
second-class constraints must be eliminated from the formalism by taking them
strongly equal to zero.

5. CONCLUSIONS

Recently (Zandron, in press), the topological five-dimensional Chern—-Simons
gravity was formulated in the framework of the first-order extended canonical
covariant formalism (CCF). The relation between the CCF and the usual first-
order canonical formalism written in components was also given. This was done
by means of a nontrivial integral relationship between the form brackets and the
usual Poisson brackets.

As it was shown, the CCF is not a proper canonical formalism because it does
not propagate data defined on an initial hypersurface as it is required by a standard
mechanical system.

In spite of this, at classical level the CCF is a powerful method to understand
the structure of the gravitational field, particularly in more than four dimensions
and for higher curvature gravity models (Zandron, in press). It is covariant in all
their steps because of the use of exterior algebra. This allows to find the equations
of motion and the constraints in a very simple way, without introducing complicate
calculations.

Moreover, from the CCF only is possible go over to the proper canonical
formalism in the first-order formulation, i.e., when the spin connection and the
funfbein are taken as independent field variables.
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Contrarily to what happens in the CCF, in the second-order CFF after long
and heavy algebraic manipulations, cumbersome noncovariant expressions for the
physical quantities are obtained.

The torsion equation allows to obtain the second-order canonical formalism
starting from the first-order one. In the Riemannian case the torsion two-form
R# = 0 equation must be considered as a strongly equal to zero constraint, and so
the spin connection is solved in terms of thafiiein.

Because of the higher-derivative character of the model made evident in the
second-order formalism, the presence of second time-derivatives ourttieiii
field makes necessary the implementation of the Ostrogradski transformation in
order to introduce canonical momenta. Essentially this implicate to take the first
time-derivate of thediifbein as an independent dynamical field.

Finally, by performing the space—time decompositiorMA, and by using
the Egs. (3.1) and §3.6), the Lagrangisn density (4.2) is written in terms of the
quantitiesV,i, N+, ¥, 2, andK;; Later on, this constrained Hamiltonian
system must be treated as usual according to the Dirac prescriptions.

The canonical Hamiltonian is evaluated from the Eq. (4.7). Later on, the
total Hamiltonian (4.8) as generator of time evolution can be given in terms of
the first-class constraints which closes the constraints algebra. Therefore, all the
Hamiltonian gauge symmetries remain determined and the apparent gauge degrees
of freedom csn be unambiguously removed leaving only the physical ones. This
last step is indispensable when the model is considered from the quantum point of
view.
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